AURORA OPERATING MANUAL

For use with AX-595

Printed in China 9220260

Removing and Replacing the Calculator's Cover

Always slide the keyboard end of the unit into the cover first. Never slide the display end of the unit into the cover.

Holding the cover as shown in the illustration, slide the unit out of the cover before use. Picture......1 Holding the cover as shown in the illustration, slide the unit out of the cover after

use. Picture......2

Precautions

- Don't expose the machine to water, direct sunlight, extremely hot or cold temperatures or dusty environments.
- Don't drop the machine or subject it to heavy impact.
- Use a soft cloth to clean the machine. Do not use detergents.

Display (TrueView Dot Matrix Display)

- S : Shift key
- A : Alpha key
- M : Independent memory
- STO : Store memory
- RCL : Recall memory
- STAT : Statistics mode
- D : Degree Mode R : Radian Mode
- G : Gradient Mode
- FIX : Fixed-decimal setting
- SCI : Scientific Notation
- Maths : Math Display mode
- ▲ :Scroll Up
- ▼ : Scroll Down
- Scroll Left
 Scroll Right
- Disp :Multi-statements Display

Before Using the Calculator

Check the current Calculation mode

Be sure to check the status indicators that indicate the current calculation mode (COMP, STAT, TABLE), display formats setting and angle unit setting (Deg, Rad, Gra).

Return to initial setup

Pressing Shift CLR 1 (setup) = (Yes) CA to return the initial calculator setup.

Calculation mode	: COMP
Input/ Output Format	: Maths
Angle unit :	Deg
Display Digits	: Norm 1
Fraction Display Format	: d/c
Statistical Data Input	: OFF
Decimal Point format	: Dot
This action will not clear	the variable memories

Initialize the calculator

When you are not sure of the current calculator setting, you are recommended to initialize the calculator (calculation mode "COMP", angle unit "Degree", and clear reply and variable memories), and LCD contrast by pressing Shift CLR 3 (All) ((Yes) (CA).

Getting Started

Power On and Off

First time operation: Press ON Shift] CLR 3 = CA to reset the calculator. Power ON: When ON is pressed. Power OFF: Shift OFF are pressed.

Display Contrast Adjustment

Press Shift SET-UP \checkmark 5 (5: \checkmark CONT \blacktriangleright), enter the Display Contrast Adjustment screen.

Press > to make the display contrast darken.

Press < to make the display contrast lighten.

Press CA or ON to confirm and clear the screen.

Auto Power Off Function:

When the calculator is not used for about 7 minutes, it will automatically power off.

- To initialize the LCD contrast, press Shift CLR 3 = CA outside the Display Contrast Adjustment screen.
- Mode Selection
- Press MODE to enter the Calculation Mode Selection screen.
- Press 1, 2, 3 to select the calculation mode.
- See " Display Contrast Adjustment" section.
 - 1:COMP
 2:STAT

 3:TABLE
 3:TABLE

 Mode
 LCD Indicator
 Operation

 Normal calculation
 COMP
 MODE 1
 - Statistical calculation
 STAT
 STAT
 MODE [2]

 Function Table calculation
 TABLE
 MODE [3]
- Initial mode is COMP mode

Calculator Set-up Menu

 Press Shift SET-UP to enter the Calculator Set-up Menu; press V / A for next/previous page.

- To select the calculator input & output format [1] Maths or [2] Line.
 - [1] Maths-(Maths mode): The majority of calculation input and output (e.g. Fraction, pi, square root number) are shown in Mathematics textbook format. And "Maths" icon will be shown.
 - [2] Line-(Line mode): The majority of calculation input and output are Shown in the lines format.

Maths mode

√4+2

To select the angle unit [3] Deg, [4] Rad or [5] Gra

- [3] Deg: Angle unit in Degree[4] Rad: Angle unit in Radian[5] Gra: Angle unit in Gradient
- [-] ---- g-- ---- ---
- $90^\circ = \frac{\pi}{2}$ radiation grads
- To select display digit or notation [6] Fix, [7] Sci or [8] Norm

[6] Fix: Fixed Decimal, [Fix 0~9?] appears, specify the number of decimal places by pressing [0] ~ [9].

Example: 230 ÷ 7 =32.8571 (FIX 4) =32.86(FIX 2)

[7] Sci: Scientific Notation, [Sci 0~9?] appears, specify the number of significant digits by pressing [0]~[9].

[8] Norm: Exponential Notation, [Norm 1~2?] appears, specify the exponential I notation format by pressing [1] or [2].

Norm 1: Exponential notation is automatically used for

|x|<10⁻²,|x|>=10¹⁰

Norm2:Exponential notation is automatically used for

|x|<10⁻⁹, |x|>=10¹⁰.

Example: $1 \div 1000 = 1 \times 10^{-3}$ (Norm 1) = 0.001 (Norm 2)

■ To specify the fraction calculation result display format [1] =- or [2] . [1] =-: specify Mixed fraction display. =-

[2] ■ : specify Improper fraction display.

- To select the statistical display format [3] STAT([1] ON or [2] OFF)
 [1] ON: Show FREQ (Frequency) Column in Statistical Data Input Screen.
 [2] OFF: Hide FREQ (Frequency) Column in Statistical Data Input Screen.
- To select the decimal point display format [4] Disp ([1] Dot or [2] Comma)
 [1] Dot: specify dot format for Decimal point result display.
 [2] Comma: specify comma format for Decimal point result display.
- To Adjust Display contrast [5] CONT See " Display Contrast Adjustment" section.

Inputting Expressions and Values

Input Capacity

- This calculator allows you to input a single calculation up to 99 bytes. Normally, one byte is used as each time you press one of the numeric keys, arithmetic keys, scientific function keys or Ans, Some functions require 4- 13bytes, Shift, Alpha, and the direction keys will not use up any bytes.
- When input capacity is less than 10 bytes, the input cursor will change from " to " " that notifying the memory is running now.

Input Editing

- New Input begins on the left of display. If input data is more than 15 characters, the line will scroll to the right consecutively. You can scroll back to the left by using and to review the input.
- In Line mode, press to let the cursor jump to the beginning of inputting, while will jump to the end.
- In Maths mode, press to let the cursor jump to the beginning of inputting while it is at end of the input calculation. Or press do let the cursor jump to the end of inputting while it is at the beginning of the input calculation.
 Omit the multiplication sign and final close parenthesis.

Example: $2 \times \log 100 \times (1+3) = 16$

	Operation 1	Display 1
	2×log100)×	2×log(100)×(1+3)
Including × *1	*2	
)_*2, <u>)</u> *3	*1 (1+3))=	16
	*3	
Omitting \times *1.	Operation 2	Display 2
	2 log 1 0 0)	2log(100)(1+3
Omitting) *3	(1+3=	16

*1. Omit multiplication sign (x)

- Input before an open parentheses (: 1 x (2+3).

-Input before scientific functions that includes parenthesis: 2 x sin(30). - Input before Random number function Rand .

- Input before Variable (A, B, C, D, E, F, X, Y, M) ,π, e.
- *2. Scientific functions come with the open parenthesis.
- Example: sin(, cos (, Pol(, LCM(... You need to input the argument and the close parenthesis).

*3. Omit the last close parenthesis before the = , M+, Shift STO.

Insert and overwrite Input mode

In Line mode, you can use INSERT Ins or overwrite mode for inputting. In Insert mode (Default input mode), the cursor is a vertical flashing line " | " for inserting a new character.

In overwrite mode, press Shift Ins key to switch the cursor to a flashing horizontal (_) and replace the character at the current cursor position.

In Maths mode, you can only use the insert mode. Whenever the display format changes from Line mode to Maths mode, it will

automatically switch to the insert mode.

Deleting and Correcting an Expression

- In insert mode: Move the cursor to the right of the character or function that needs to be deleted, then press $\boxed{\text{DEL}}$.
- In overwrite mode: Move the cursor under the character or function being deleted, then press DEL

Example: 1234567+889912

Mode Setting	Key In operation	Display(input Line only)
Method 1: Line/Maths mode-	1234567 + 889912 ◀ 7 times	1234567 +889912

	Line/iviatins mode-		
	Insert mode	DEL 0	1234560 +889912
	Method2:Line mode-	Shift SET-UP 2 1234567+889912 Shift Ins	1234567+889912_
	overwite mode	✓ 8 times	123456 <u>7</u> +889912
		Ō	1234560 <u>+</u> 889912

(2) Deletion (1234567→ 134567)

Method1:Line/Maths	 ✓ 12 times 	12 34567+889912
mode- Insert mode	DEL	134567+889912
Mothod 2: Line	Shift Ins	1234567+889912_ 1 <u>2</u> 34567+889912
mode – Overwrite	✓ 13times	
mode	DEL	1 <u>3</u> 4567+889912

(3) Insertion (889912→2889912)

	Line/Maths mode – Insert mode	 ✓ 6times 	1234567+ 889912
		2	1234567+2 889912

Inputting and Display Result in Maths Mode

In Maths Mode, the Input and display result of fraction or certain functions (log, x²,x³ x[■], √**□**, ³√**□**, ¹√**□**, x¹, 10[■], e[■], Abs) are shown in Handwriting/ Mathematics format.

MATHS MODE : shift SET-UP 1

Example In Maths mode	Key In operation	Display
$\left \sqrt{3} + \frac{2}{\sqrt{2}}\right $	Abs v 3 + 2 - v 2 -	$\left \sqrt{3} + \frac{2}{\sqrt{2}}\right $ $\sqrt{3} + \sqrt{2}$

Remark

 Some input expressions cause the height of a calculation expression to be greater than one display screen. Maximum input capacity: 2 display screen (31 dots x2).

(2) Calculator memory limits how many functions or parentheses can be input in any single expression. In this case divide the expression into multiple parts and calculate separately.

(3) If part of the expression you input is cut off after calculation and in the result display screen you can press f or b to view the full expression.

Basic Calculations

- Press MODE 1 to enter COMP mode.
- During the busy calculation, the calculator shows only the indicators (without any calculation result). You can press CA key to interrupt the calculating operation.

Arithmetic Calculations

- To calculate with negative values (exclude the negative exponent) enclose them with parentheses.
- This calculator supports 99 levels of parenthetical expression.
 MATHS MODE: Shift | SET-UP | 1

Example in Maths mode	Key in operation	Display
(2.5) ²	(2•5))x²=	$(2.5)^2$ $\frac{25}{4}$
(4×10 ⁷⁵)(-2×10 ⁻⁷⁸)	4 EXP 7 5 × () 2 EXP () 7 8 3	$4_{\rm E} 75 \times -2_{\rm E} -78$ $-\frac{1}{125}$

Memory Calculations

Memory Variables

- There are 9 memory variables (A F , M, X and Y), which store data, results, or dedicated values.
- Store values into memory by pressing Shift STO + Memory variable.
- Recall memory values by pressing RCL + Memory variable.
- Memory content can be cleared by pressing 0 Shift STO +Memory variable. Example: 24+6→A (30 store into A), calculate 2 sin A and clear memory A.
 MATHS MODE: Shift SET-UP 1

(1) Replace an entry (1234567→1234560)

Example in Maths mode	Key in operation	Display
24+6 → A	24+6Shift STOA	24+6→A 30
2×sin A =1	2 sin Alpha A	2sin(A 1
Clear memory A	0 Shift STO A	0→A 0

Independent Memory

- Independent memory <u>M</u> uses the same memory area as variable M. It is convenient for calculating cumulative totals by just pressing <u>M+</u> (add to memory) or <u>M</u>. (subtract from memory),
- Memory contents are retained even when the calculator is powered off.
- Clear independent memory (M) by pressing 0 Shift STO M
- Clear all memory values by pressing Shift CLR 2(Memory) = CA.
- Answer Memory
- The input values or the most recent calculation result will be automatically stored into Answer memory whenever you press , Shift , M, Shift M, ,Shift STO memory, RCL memory. Answer memory can hold up to 18 digits.
- Recall and use the latest stored Answer memory by pressing Ans.
- Answer memory is not updated as an error operation had been performed.
- Answer memory contents can be maintained even if pressing <u>CA</u>, changing the calculation mode, or turning off the calculator.

Example in Maths mode	Key in operation	Display
123+456→M+,	1 2 3 + 4	Ans ²
Ans² =335,241	5 6 M+ X ² =	335241
789012- Ans =	7 8 9 0 1	789012-Ans
453,771	2 - Ans =	453771

Fraction Calculations

The calculator supports Fraction calculation and the conversions between Fraction, Decimal point, Mixed fraction and Improper fraction.

- Specify the fraction calculation result display format by either mixed fraction
 (■ –) or improper fraction (■) in set-up menu.
- At the default setting, fractions are displayed as improper fractions ($^{\blacksquare}$).

	Improper Fraction (=)	Mixed Fraction (∎–)
Maths Mode	$\frac{13}{3}$	$4\frac{1}{3}$
Line Mode	13]3	4] 1] 3

- Press $F \leftrightarrow D$ to switch a calculation result between fraction and decimal format.
- Press <u>shift</u> <u>a b/c+ d/d</u> to switch a calculation result between improper fraction and mixed fraction format.
- Result will be displayed in decimal format automatically whenever the total digit of a fractional value (integer + numerator + denominator + separator marks) exceeds 10.
- If a fraction calculation is mixed with decimal value, the result will be displayed by decimal format.

Fraction ↔ Decimal point conversion

MATHS MODE: Shift SET-UP 1

Example in Maths mode	Key in operation	Display
$1\frac{1}{3} + \frac{5}{6} = \frac{13}{6}$ In Maths mode	1 Shitt∎ 1 Þ 8 ▶+6 E 6 E	$1\frac{1}{3} + \frac{5}{6}$ $\frac{13}{6}$
13/ ₆ ↔2.166666667 (Fraction↔ Decimal)	F⇔D	$1\frac{1}{3} + \frac{5}{6}$ 2. 1666666667
2.1666666667↔ $2\frac{1}{6}$ (Decimal↔Mixed Fraction)	Shift a b/c→ d/c	$1\frac{1}{3} + \frac{5}{6}$ $2\frac{1}{6}$

Percentage Calculations MATHS MODE : Shift SET-UP 1

Example in Maths mode Key in operation Display To calculate 30% of 820 (Maths mode) 820 × 8 0 Shift (%) = 820×30% The percentage of 75 against 12 (Maths 7 5 ÷ 1 75÷12%

mode)		

Degree-Minutes-Seconds Calculations

Use degrees (hours), minutes and seconds key to perform a sexagesimal (base-60 notational system) calculation or convert the sexagesimal value into decimal value.

Degree-Minutes-Seconds ↔ Decimal points MATHS MODE : Shift SET-UP 1

Replay & Multi-statements

Replay Memory Function

- Replay memory is only available in COMP mode.
- After the calculation is executed, the calculation input and result will be stored in the replay memory automatically.
- Pressing Y (or A) can replay the performed calculation input and result history.
- After obtaining the calculation result on the display, press or b to edit the input expression of that result.
- If the ► indicator is on the right side of a calculation result display, you need to press CA and then or to scroll the calculation.
- Replay memory is cleared when you
 (1). Initialize calculator setting by Shift CLR 3 = CA.
 (2). Change from one calculation mode or display mode to other
 (3). Press ON key.
- (4). Press Shift OFF to power off machine.

Multi-statements Function

- Use a colon : to put two or more calculations input together.
- The first executed statement will have "Disp" indicator; and the "Disp" icon will disappeared after the last statement is being executed.

MATHS MODE: Shift SET-UP 1

Example in Maths mode	Key in operation	Display
1×23=23 2+25-27	1 × 2 3 Alpha 2 + 2 5	1×23:2+25
Using a multi-statement in Maths mode		▲ Disp 1×23 23
	B	▲ 2+25 27
Replay the previous Calculation history 1 ×23=23	A	▼ 1×23 23

Functional Scientfic Calculations

- Press MODE 1 to enter COMP mode.
- π=3.1415926535897932324
- e = 2.7182818284590452324
- Square, Root, Cube, Cube Root, Power, Power Root, Reciprocal and Pi.

MATHS MODE: Shift SET-UP 1

Example in Maths mode	Key in operation	Display
$(\sqrt[3]{3^2+5^3})^{-1} \times \pi$	(Shift ∛∎ 3 x ²	$\left(\sqrt[3]{3^2+5^3}\right)^{-1}\times\pi$
=0.6139244642	x^1 × Shift π =	0.6139244642

$\sqrt[3]{2^6} + \sqrt[5]{243}$	Shift ☑ 2 x 6 > + Shift ☑ 5 >	$(\sqrt[3]{2^6} + \sqrt[5]{243})$
=/	243))=	7

Logarithm,	Natural logarithm,	Antilogarithm	and logab.
MATUC NO	DE CHIH CET UD	4	

MATHS MODE: Shift SET-UP 1

Example in Maths mode	Key in operation	Display
e ⁻³ +10 ^{1.2} +ln3=	Shift e (-) 3 ►	e ⁻³ +10 ^{1.2} +ln(3
16.99733128	+ In 3 =	16.99733128
log ₂ 8 - log 1=3	log∎ 2 ≥ 8 > - log 1 =	log ₂ (8)-log(1

Angle unit Conversion

The calculator angle unit setting is "Degree, pressing Shift SET-UP enter the setup menu to change the <u>unit to "Radian "or "G</u>radient:

Then, pressing 1, 2 or 3 will convert the displayed value into the selected Anale unit.

MATHS MODE: Shift SET-UP 1

Example in Maths mode	Key in operation	Display
Convert 180 Degree into radian and gradient	Shift SET-UP 4 1 8 0 Shift DRG▶ 1 =	R Maths ▲ 180° π
gradient (180°=π ^{Rad} =200 ^{Grad})	Shift SET-UP 5	G Maths ▲

Trigonometry Calculations

- Before using the trigonometric functions (except hyperbolic calculations), select the appropriate angle unit(Deg/Rad/Gra) by pressing Shift SET-UP
- 90° = $\frac{\pi}{2}$ Radians=100 Gradients.

2		
Example in Maths mode	Key in operation	Display
Degree Mode	Shift SET-UP 3	D
$\sin 30 = \frac{1}{2}$	sin 30 =	$sin(30)$ $\frac{1}{2}$
$\frac{1}{\frac{\sin 45^{\circ}}{=\sqrt{2}}} = \text{Cosec } 45^{\circ}$	sin 4 5 X 1 =	$\sin(45)^{-1}$ $\sqrt{2}$

- Hyperbolic (sinh /cosh/tanh), Inverse Hyperbolic(sinh⁻¹/cosh⁻¹/ tanh⁻¹) Funtions.
- Pressing hyp enter sub-hyperbolic menu.

MATHS MODE: Shift SET-UP 1

Example in Maths mode	Key in operation	Display	
sinh2.4 - cosh2.4 =-0.09071795329	hyp 1 2 • 4) - hyp 2 2 • 4) =	sinh(2.4 - cosh(⊳ -0.09071795329	
cosh ⁻¹ 45 =4.499686191	hyp 5 4 5 E	cosh ⁻¹ (45 4.499686191	

Permutation, Combination, Factorials and Random Number Generation

Permutation: $nPr = \frac{n!}{(n-r)!}$

- Combination: $nCr = \frac{III}{r!(n-r)!}$
- Factorial: x!=x(x-1)(x-2)...(2)(1)

MATHS MODE: Shift SET-UP 1

Example in Maths mode	Key in operation	Display
10P4=5040	1 0 Shift nPr 4 =	10P4 5040
4C2=6	4 Shift nCr 2 =	4C2 6
10!=3628800	1 0 Shift x! =	10! 3628800

Random Number Generation

Shift Rand :Generate a random number between 0.000 and 0.999. And the

Display result will be fraction format in Maths mode status. <u>Alpha</u> <u>-Rand</u> Generate a random number between two specified positive integers.The entry is divided by ", ".

MATHS MODE: Shift SET-UP 1

Example in Maths mode	Key in operation	Display
Generate a random number between 0.000 & 0.999	Shift Rand =	Rand <u>739</u> 1000
Generate an integer from range of 1 to 100	Alpha I-Rand 1 Shift, 1 0	I-Rand(1,100 43

*The value is only a sample, results will differ each time.

Least Common Multiple and Greatest Common Divisor

LCM: Calculate the least common multiple among three positive integers. GCD: Calculate the greatest common divisor among three positive integers.

MATHS MODE: Shift SET-UP 1

Example	Key in operation	Display		
LCM(15,27,39,) =1755	Shift LCM 1 5 Shift , 2 7 Shift , 3 9 ⊨	LCM(15,27,39 1755		
INE MODE: Shift SET-UP 2				

Example	Key in operation	Display
GCD(12,24,60)	Alpha GCD 1 2 Shift , 2	GCD(12,24,60
=12	4 Shift , 6 0 =	12

Integer Division Calculations(I-Div)

- "Q" is quotient of an integer division. "R" is remainder of an integer division.
- The calculated quotient value(Q) and remainder(R) will be stored into memory variables "C" and "D" $\underline{automatically}$ assigned.
- In Maths mode, press < or > to scroll a long calculation result.
- In Line mode, the quotient value (Q) and remainder (R) will be shown over 2
- line.
- Only Quotient Value (Q) can continue to be used for the next calculation or be stored into memory variables.

LINE MODE: Shift SET-UP 2

Example in Line mode	Key in operation	Display		
35÷10=3×10+5 Q=3 R=5 (Line mode)	Shift I-Div 3 5 Shift	I-Div(35,10 Q= R=	3 5	
Quotient value(Q)+3 =6	+ 3 =	Ans+3	6	;
Recall Quotient Value(Q)	RCLC	С	3	5
Recall Remainder Value(R)	RCL D	D	5	;

Coordinate Conversion

- With polar coordinates, you can calculate and Display $\boldsymbol{\theta}$ within
- 180° < θ ≤ 180° range, (Same as Radian and Gradient). In Maths mode, press \checkmark or \blacktriangleright to scroll the calculation result.

- In Line mode, (x, y) or (r, θ) will be shown over 2 line. After conversion, the results will automatically be assigned to memory variables X and Y Press RCL X or y to show the results.

enter Statistical calculation mode and "STAT" indicator lights up.

In Statistical calculation mode, press Shift STAT 1 (Type) to select the calculation type.

Statistical Type Selection

There are 8 types of Statistical Calculation after entering the Statistical Type Selection screen, press the number to select the type of Statistic Calculation.

1:SD	2:Lin
3:Quad	4:Log
5:e EXF	9 6:ab EXP
7:Pwr	8:Inv

Pressing Key	Statistical Calculation	
1(SD)	One-variable statistics (X)	
2(Lin)	Two-variable, Linear regression (y=A+Bx)	
3(Quad)	Two-variable, Quadratic regression (y=A+Bx+Cx ²)	
4(Log)	Two-variable, Logarithmic regression (y=A \times BInx)	
5(e EXP)	Two-variable, E exponential regression (y=Ae ^{Bx})	
6(ab EXP)	Two-variable, ab Exponential regression (y=AB ^x)	
7(Pwr)	Two-variable, Power regression (y=Ax ^B)	
8(Inv)	Two-variable Inverse regression $(v - A + B/x)$	

Statistical Data Input

х 1

3

After confirming the calculation type of the above Statistical Type Selection screen or by pressing Shift STAT 2 $\langle Data \rangle$ in the STAT mode, the following Statistical Data input screen will be shown

х Υ 1

- 1-variable STAT After turning on Data Frequency "FREQ" in the calculator's setup menu, the FREQ column will be added into the above screen.
- The following are the maximum number of line for data input.

Statistic type	FREQ On	FREQ Off
Single Variable (only x input)	40	80
2 Variable (x & y input)	26	40

- Input expression and display result value in Statistical Data Input screen are in line mode (same as Comp mode with Line mode status).
- After inputted the data, then press = to store the value into statistical registers and display the value (max, 6 digits) in the cell, and you can press cursor key to move the cursor between each cell.

Editing Statistical Sample Data

- Replacing the Data in a cell.
 - (1) In Statistical Data Input screen, move the cursor to the cell you want to edit. (2) Input the new data value or expression, and then press
- Deleting a line
- (1) In Statistical Data input screen move the cursor to the line you want to delete.
- (2) Press DEL Inserting a line

(1) In Statistical Data input screen, move the cursor to the line that will be under the line being inserted.

- (2) Press Shift STAT 3 (Edit).
- (3) Press 1 (Ins).
- Deleting All STAT Data input. (1) Press shift STAT 3 (Edit).

(2) Press 2 (Del-A). Statistical Calculation Screen

- After inputting the STAT Data, press CA to enter Statistical Calculation screen.
- Statistical Calculation screen are in Line mode for input & output Display
- Use Statistical Menu to calculate the Statistical result, (S-SUM, S-VAR, S-PTS, Reg).

Statistical Menu

In Statistical Data Input screen or Statistical Calculation screen, you can press Shift STAT to display the Statistical Menu screen.

1:Type 2:D	ata	1:Type 2:Data
3:Edit 4:S-	SUM	3:Edit 4:S-SUM
5:S-VAR 6:	S-PTS	5:S-VAR 6:S-PTS
		7:Reg
1-variable	STAT	2-variable STAT

SI	nift F	Pol	:Convert	rectangular	coordinates	(x,	y)	to	polar	coordinates	(r,	θ);
Press	RCL	Х	for r , or	RCL Y fo	rθ.							

Example in Maths mode	Key in operation	Display
With rectangular	Shift Pol(1 Shift , √■ 3 =	Pol(1, √3 r=2, θ=60
coordinate (x=1,y= $\sqrt{3}$). Find Polar coordinate	RCLX	X 2
(r,θ) at degree mode.	RCL Y	Y 60

Example in Line mode	Key in operation	Display
With Polar coordinate (r=2, θ = 60°)	Shift Rec(2 Shift , 6 0 ⊒	Rec(2,60 X= 1 Y= 1.732050808
Coordinate (x, y) at	RCLX	X 1
Degree mode	RCLY	Y 1 732050808

Absolute Value Calculation

Example in Maths mode	Key in operation	Display
sin(30-5)x(-π)	Abs sin 30 -	sin(30-5)x(-π)
=1.327694426	Shift π) =	1.327694426

Engineering Notation

Example in Line mode	Key in operation	Display
	1 + 2 0 0 8	$1 \div 200$ 5×10^{-3}
1÷200=5× 10 ⁻³ (In Line Mode)	ENGENG	$1 \div 200$ 5000 × 10 ⁻⁶
	Shift <eng< td=""><td>$1 \div 200$ 5 x 10⁻³</td></eng<>	$1 \div 200$ 5 x 10 ⁻³

Display Values Exchange

- In Maths mode pressing $F \leftrightarrow D$ to change the calculation result value between
- fraction form \leftrightarrow Decimal form, π form \leftrightarrow Decimal form, $\sqrt{\blacksquare}$ form \leftrightarrow Decimal form. In Line mode, pressing $\overleftarrow{\vdash} \Box$ to **ONLY** change the calculation result value between fraction form \leftrightarrow Decimal form, the other π and $\sqrt{\blacksquare}$ calculation will display the decimal value only.

LINE MODE: Shift SET-UP 2

Example in Line mode	Key in operation	Display
$\frac{2}{3} + 2 = \frac{8}{3}$	2 = 3 + 2 =	2∫3+2 8∫3
(In Line Mode)	F↔D	2 J 3+2 2.6666666667

MATHS MODE: Shift SET-UP 1

Example in Maths mode	Key in operation	Display	
$\frac{1}{2} + 2 = \frac{5}{2} = 2.5$	1 - 2 > + 2 =	$\frac{1}{2} + 2$ $\frac{5}{2}$	
(În Mathš Mode)	F⇔D	$\frac{1}{2}$ + 2 2.5	

MATHS MODE: shift SET-UP 1

Example in Maths mode	Key in operation	Display
$\tan 60 = \sqrt{3}$	tan 6 0 =	tan(60 $\sqrt{3}$
=1.732050808	F⇔ D	tan(60 1.732050808
$\pi \div 6 = \frac{1}{c}\pi$	Shift π ÷ 6 ⊨	$\pi \div 6$ $\frac{1}{c}\pi$
=0.5235987756	F⇔D	$\pi \div 6$ 0.5235987756

Remark

- Some Calculation results pressing $\overrightarrow{\text{F} \leftrightarrow \text{D}}$ key will not convert the display value.
 - Some display result conversion may take a long time.

Statistical Calculations

Press MODE 2 to enter Statistical Type Selection screen and select 1~8.Then

STAT items	Description
(1) Type	To enter the statistical calculation type screen
(2) Data	To enter the statistical Data input screen
(3) Edit	To enter Edit sub-menu for editing STAT editor screen contents
(4) S-SUM	To enter S-Sum sub-menu (calculating sum)
(5) S-VAR	To enter S-Var sub-menu (calculating variable)
(6) S-PTS	To enter S-PTS sub-menu (calculating points)
(7) Reg	To enter Reg sub-menu (Regression calculation)

Statistical calculation result in [4] S-SUM, [5] S-VAR, [6] S-PTS, [7] Reg

STAT Sub-menu	STAT Type	Value	Symbol	Operation
	1&2 variable	Summation of all x ² value	∑x²	Shift STAT
STAT		Summation of all x value	Σx	Shift STAT
		Summation of all v ² value	∑у2	Shift STAT
		Summation of all y value	Σу	Shift STAT
S-SUM	2-variable	Summation of xy pairs	∑ху	Shift STAT 4 5
	STAT only	Summation of all x ³ value	∑x ³	Shift STAT 4 6
		Summation of all x ² y pairs	∑x²y	Shift STAT 4 7
		Summation of all x ⁴ pairs	∑x ⁴	Shift STAT 4 8
		Number of data sample	n	Shift STAT
	1&2	Mean of the x values	x	Shift STAT
	Variable STAT	Population standard deviation of x	σ_{n}	Shift STAT
S-VAR		Sample Standard! Deviation of x	$x\sigma_{n-1}$	Shift STAT
		Mean of the y values	ÿ	Shift STAT
	2-variable STAT only	Population standard deviation of y	$y\sigma_n$	Shift STAT
	· · · · · · · · · · · · · · · · · · ·	Sample standard Deviation of v	$y\sigma_{n-1}$	Shift STAT 5 7
	1&2 variable	Minimum value of x	min X	Shift STAT 6 1
S-PTS	STAT	Maximum value of x	max X	Shift STAT 6 2
3 13	2-variable	Minimum value of y	min Y	Shift STAT 6 3
	STAT only	Maximum value of y	max Y	Shift STAT 6 4
		Regression coefficient A	А	Shift STAT
		Regression coefficient B	В	Shift STAT
Reg	For non-Quad Reg	Correlation coefficient r	r	Shift STAT
		of x	Ŷ	7 4
		of y	ŷ	7 5
		Regression coefficient A	A	Shift STAT
		coefficient B	В	
Reg	For Quad	coefficient C	С	
	Reg only	of x1	х̂1	
		of x2	λ2	
		Estimated value of y	ŷ	7 6

Statistical Calculation Example.

SD type Statistical calculation Example:

To calculate Σx^2 , Σx_1 , n, x, x σ_n , x σ_{n-1} , minX , maxX , of data: 75,85,90 77,79 in SD mode (Freq: OFF).

Key in operation	Display
MODE 2	1:SD 2:Lin 3:Quad 4:Log 5:e EXP 6:ab EXP 7:Pwr 8:Inv
1 (SD)	1 2 3
75=85=90=7 7=79=	4 77 5 79 6
CA Shift STAT 4 1 3	∑x ² 33120
CA Shift STAT 4 2 3	∑x 406
CA Shift STAT 5 1 =	n 5
CA Shift STAT 5 2 3	x 81.2
CA Shift STAT 5 3 3	xσ _n 5.528109984
CA Shift STAT 5 4	xσ _{n-1} 6.180614856

Quadratic Regression type Statistical Calculation Example:

ABC Company investigate the effectiveness of the advertisement expense in coded units, the following data were obtained:

Advertisement expenses: X	18	35	40	21	19
Effectiveness: y (%)	38	54	59	40	38

Please use the regression to estimate the effectiveness (estimate the value of y) if the advertisement expenses X=30, and estimate the advertisement expenses level (estimate the value of X_1 , X_2) for effectiveness y = 50.

Key in operation	Display
MODE 2	1:SD 2:Lin 3:Quad 4:Log 5:e EXP 6:ab EXP 7:Pwr 8:Inv
3 (Quad)	1 X Y 3
18=35=40=21 =19]= VD 88=54=59=40 =38]	4 21 40 5 19 38 6
CA 3 0 Shift STAT 7 6 =	30ŷ 48.69615715
CA 5 0 Shift STAT 7 4 =	50x̂ ₁ 31.30538226
CA 5 0 Shift STAT 7 5 =	50x̂ ₂ -167.1096731

Function (X, Y) Table Calculation

Input f(x) function to generate the function table for x & f(x),

Steps to generate a Number Table -

1. Enter TABLE Mode

Press MODE 3 to enter the Table function calculation,

2. Function Input screen Input function with X variable (Alpha x) to generate Function Table

Result. All other variables (A,B,C,D, E, F, Y) and independent memory (M) act as the value.

Pol, Rec, I-Div function not able to be used in Function Input screen.

The Function Table Calculation will change X-variable.
 Input the start, end & step information

.

Input the value press [=] to confirm on the following screens Input expression and display result value in following screens are in Line mode status

There are a maximum of 30 x-values for generate function table, The "insufficient Error" Will be shown if you input the start, end, step value combination is more than 30 x-values.

Display screen	You should input:-
Start?	Input the lower limit of X (Default =1).
End?	Input the upper limit of X (Default =5). *End value must be greater than the start value.
Step?	Input the increment step (Default =1).

In Function Table Result screen, you cannot edit the content, and press CA return to Function input screen. Example: $f(x)=x^3+3x^2-2x$ to generate the function table for the range $1\le x\le 5$

incremented in steps of 1.

Key in operation	Display
MODE 3	f(x)=
Alpha x X + B Alpha X X - 2 Alpha x	f(x)=X ³ +3X ² -2X
= 1 = 5 = 1 =	X F(X) 2 2 3 3 48 1
	X F(X) 3 3 48 4 4 104 5 5 5 190 5

Input Range and Error Message

Calculation Precision, Input Range

Number of Digits for Internal Calculation	Up to 18 digits
Precision *	 <u>+</u> at the 10th digit for a single calculation. <u>+</u> at the least significant for exponential display
Calculation Range	<u>+</u> ×10 ^{.99} to <u>+</u> 9.999999999×10 ⁹⁹ or 0

Function Calculation Input Ranges

Functions	Input Range	
	DEG	0≦ x <9×10 ⁹
Sin v	RAD	0≦ x <157 079 632.7
SITX	GRA	0≦ x <1×10 ¹⁰
	DEG	$0 \le x < 9 \times 10^9$
Cos x	RAD	0≦ x <157 079 632.7
003 X	GRA	$0 \le x < 1 \times 10^{10}$
	DEG	Same as sinx , except when x =(2n-1) ×90
Tan x	RAD	Same as sinx , except when $ x =(2n-1) \times \pi/2$
	GRA	Same as sinx , except when x =(2n-1) ×100
Sin ⁻¹ x		
Cos ⁻¹ x	0≦ x ≦	≦1
tan ⁻¹ x	0≦ x ≦	≨9.999 999 999×10 ⁹⁹
Sinh x	0≦ x ≦	230 258 509 2
cosh x		
Sinh ⁻¹ x	0≦ x ≦	≦4.999 999 999×10 ⁹⁹
cosh ⁻¹ x	1≦x≦4	4.999 999 999×10 ⁹⁹
tanh x	0≦ x ≦	9.999 999 999×10 ⁹⁹
tanh ⁻¹ x	0≦ x ≦	≨9.999 999 999×10 ⁻¹
Log x/Inx	0 <x≦9< td=""><td>.999 999 999×10⁹⁹</td></x≦9<>	.999 999 999×10 ⁹⁹
10 [×]	-9.999	999 999×10 ⁹⁹ ≦x≦99.999 999 99
e ^x	-9.999	999 999×10 ⁹⁹ ≦x≦230.258 509 2
√x	0≦x<1	×10 ¹⁰⁰
X ²	x <1×1	0 ⁵⁰
X ³	x 2.154	4 434 69×10 ³³
x ⁻¹	x <1×1	00 ¹⁰⁰ ,x≠0
³ √x	x <1×1	0 ¹⁰⁰
X!	0≦x≦(69(x is an integer)
	0≦n<1	$\times 10^{10}$, $0 \leq r \leq n(n, r \text{ are integers})$
nPr	1≦ {n!/	/ (n-r)!}<1×10 ¹⁰⁰

- 0-	$0 \le n < 1 \times 10^{10}$, $0 \le r \le n(n, r \text{ are integers})$
nCr	$1 \le n! / r! < 1 \times 10^{100}$ or $1 \le n! / (n-r)! < 1 \times 10^{100}$

Functions	Input Range	
B.I.()	x , y ≦9. 999999 999×10 ⁹⁹	
Pol (x, y)	√x ² + y ² ≦9. 999999 999×10 ⁹⁹	
5 (0)	0≦r≦9. 999999 999×10 ⁹⁹	
Rec(r, U)	θ: Same as sin x	
	a , b, c<1×10 ¹⁰	
o / //	0≦b, c	
	The display seconds value is subject to an error of	
	+/- 1 at the second decimal place	
	x <1×10 ¹⁰⁰	
a • <i>i u</i>	Decimal ↔ Sexagesimal Conversions	
•	0°0′0″≦ x ≦9999999°59′59″	
	x>0; -1×10 ¹⁰⁰ < y log x<100	
\mathbf{X} (\mathbf{x}^{y})	x=0; y>0	
A (x<0; y=n, m/(2n+1)(m, n are integers)	
	However:-1×10 ¹⁰⁰ < y log x <100	
	y>0; x≠0, -1×10 ¹⁰⁰ <1/x logy <100	
	y=0;x>0	
×√y	y<0;x=2n+1,(2n+1)/m (m≠0; m, n are integers)	
	However; -1×10 ¹⁰⁰ <(1/x) log y <100	
a b/c	Total of integer, numerator, and denominator mus	
4 5/0	be 10 digits or less (including division marks).	
	$0 \le a < 1 \times 10^{10}$, $0 \le b < 1 \times 10^{10}$ (a, b should b	
I-Rand(a, b)	positive	
	integers or 0)	
Rand	Result generates a 3 digits pseudo random	
	number (0.000~0.999)	
LCM(x, y, z)	0 <x, 999="" 999×10<sup="" y,="" z≦9.999="">12 (positive integers)</x,>	
- ()))	Default result when x, y, z=0	
GCD(x, y, z)	0 <x, 999="" 999×10<sup="" y,="" z≦9.999="">12 (positive integers)</x,>	
	Default result when x, y, z=0	
	0 <x, 9.999="" 999="" 999×10<sup="" y="" ≦="">12 (positive integers)</x,>	
I-Div (x, y)	0≦Q≦999 999 9999, 0≦r≦999 999 9999(Q, r	
	are integers)	
	Derault result when x=0	
Abs	x <1×10 ¹⁰⁰	
One-variable	x -1x10 ¹⁰⁰	
Statistical		
calculation		
Two-variable	le x <1×10 ¹⁰⁰	
Statistical	y <1×10 ¹⁰⁰ FREQ <1×10 ¹⁰⁰	
calculation		

Errors are cumulative in the case of consecutive calculations, this is also true as • internal consecutive calculation are performed in the case of X $\,$ (x y), $\sqrt[4]{}, \sqrt[3]{}$ x!, nPr , nCr , etc . And may become large.

Display of results using $\sqrt{}$

Calculation results may be displayed using $\sqrt{}$ in all of the following cases: When intermediate and final calculation results are displayed in the following form:

$$\pm \frac{a\sqrt{b}}{c} \pm \frac{d\sqrt{e}_0 \leq a < 100, \quad 1 \leq d < 100}{\int 1 \leq c < 1000, \quad 1 \leq e < 1000}$$

When the number of terms in the intermediate and final calculation result is one or two.

Order of Operations

This calculator will automatically determine the operation priority of each individual command as follows:

1st Priority	Recall memory (A, B, C, D, E, F,0~9), Rand
2nd	Calculation within parentheses ().
3rd	Function with parenthesis that request the input argument to the right Pol(, Rec(, sin(, cos(, tan(, sin ¹ (, cos ⁻¹ (, tan ⁻¹ (, sinh(, cosh(, tanh(, sinh ⁻¹ (, cosh ⁻¹ (, tanh ⁻¹ (, log(, In(, e^{\Lambda}, 10^{\Lambda}(, \sqrt{, 3}(, Abs(, ROUND(,I-Rand(,
4th	Functions that come after the input value preceded by values, powers, power roots: X^2 , x^3 , x^{-1} , $x!$, ° ^{<i>m</i>} , °, r, g, ^(, x (, Percent %, log \blacksquare , EXP
5th	Fractions: ∎–, ■
6th	Prefix symbol: (-)(negative sign)
7th	Statistical estimated value calculation: $\hat{x}, \hat{y}, \hat{x}1, \hat{x}2$
8th	Multiplication where sign is omitted: Multiplication sign omitted immediately before π ,e, variables (2π , 5A, π A, etc.), functions with parentheses($2\sqrt{3}$, A sin (30), etc.)

9th	Permutations, combinations: nPr, nCr	
10th	Multiplication and division: \times , ÷	
11th	Addition and subtraction: +, -	
12th	Calculation ending instruction: =, M+, M- STO (store memory)	

In the same precedence level, calculations are performed from left to right. Operation enclosed within parentheses is performed first. When a calculation

contains an argument that is a negative number, the negative number must be enclosed within parentheses. E

Example:	
(-) 3 x ² =	-3 ² =9
((-) (3)) x ² = When same priority commands are	$(-3)^2=9$ e mixed into one calculation.
Example 1: 1 ÷ 2 Shift π =	1÷2π=0.1591549431
Example 2: 2 Shift STO (-)	$2 \rightarrow A$

1 ÷ 2 Alpha A =

Calculation Stacks

This calculator uses memory areas, called "stacks", to temporarily store numeric value (numbers) and commands (+, -, x) according to their precedence during calculations.

1÷2A=

- The numeric stack has 10 levels and command stack has 128 levels. A stack error [Stack ERROR] occurs whenever you try to perform a calculation that exceeds the capacity of stacks.
- Calculations are performed in sequence according to "Order of Operations". After the calculation is performed, the stored stack values will be released.

Error Messages and Error Locator

The calculator is locked up while an error message is shown on the display to indicate the cause of the error.

- Press CA to clear the error message, then return to the initial display of latest mode
- Press < or > to display input expression with the cursor positioned next to the error
- Press ON to clear the error message, clear the replay memory history and return to the initial display of the latest mode

Error Message	Cause	Action
Math ERROR	The intermediate or final result is outside the allowable calculation range. An attempt to perform a calculation using a value that exceeds the allowable input range. An attempt to perform an illogical operation (division by zero, etc.).	Check the input values and make sure they are all within the allowable ranges, Pay special attention to values in any using memory areas.
Stack ERROR	The capacity of the numeric stack or operator stack is exceeded.	 Simplify the calculation. Divide the calculation into two or more separate parts.
Syntax ERROR	An attempt to perform an illegal mathematical operation.	Press T or to display the cursor at the location of the error, make appropriate corrections.
Insufficient MEM	The calculation result of Function Table mode parameters caused more than 30 x-values to be generated for a table.	Narrow the table calculation range by changing the start, end, and step values, and try again.

Battery Replacement

When the display characters are dim and the contrast cannot be adjusted further, turn the calculator off and replace the battery immediately. Please replace the battery using the following procedures.

- 1. Press Shift OFF to power off the calculator.
- 2. Remove the screw that securely fixes the battery cover in place.
- 3. Remove battery cover.
- 4. Remove the old battery with ball point pen or similar sharp object.
- 5. Load the new battery with positive "+"side facing up. 6. Replace the battery cover, screw, and press ON , Shift CLR 3 = CA to initialize the calculator.

Caution: Risk of explosion if battery is replaced by an incorrect type. Dispose of used battery at your local collection point.

Electromagnetic interference or electrostatic discharge may cause the display to malfunction or the contents of the memory to be lost or altered. When this occur ,press ON, <u>shift</u> CLR 3 = CA to restart the calculator.

Specifications

Power Supply: LR44*1 (1.5V) Power Consumption: 0.0015 W Battery Life: 3 years

Auto power off: 5-9 minutes Usable Temperature: 0-40°C L153*W80*H14 mm Size: Weight: 86g (hard cover is not included)

Producer

Aurora Electronics (UK) LTD. Unit 1 & 2 Shires Industrial Estate Lichfield, Staffordshire, WS14 9AZ, U.K.